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Abstract— Motivated by next-generation air transportation Research efforts aimed at coordinating the motion of
systems, this paper investigates the relationship betweeraffic  multiple autonomous, mobile agents have yielded an array of
volume and congestion in a multi-agent system, assuming tha a:hniques for moving agents between specified points in a

the agents can communicate their intentions with one anothe hared K hil idi llisi f
In particular, we consider n independent mobile agents, each SNaréd Workspace, whiie avoiding cofiisions (see, for exam

assigned an origin and a destination point, and study how the Ple, [2]-[9]). Often, it is prudent to consider the comptgxi
minimum time necessary to safely transfer all agents from teir ~ of these methods from various perspectives, including, for
origin to .their destina.tion scales yvith the number qf agentsn.  example, the computational complexity of the algorithnm, fo
We provide an algorithm for which the transfer time scales which a number of results have been developed (see [10]

logarithmically in n. This is an improvement over previous . .
results that rely on more conservative conflict models becae for a timeline). Recently, researchers have begun to asldres

they do not leverage inter-agent cooperation to the same dege,  Other facets of complexity, including the communication

resulting in transfer times scaling as+/n. complexity (the amount of information that must be gathered
and or shared among agents) and time complexity (the
. INTRODUCTION actual time required to complete the task) [11]. In [10],

Th tairt tat ; ATS) is being f H’ue authors investigate how the time required to transfer
€ current air transportation system (ATS) is being force agents between specified origin and destination points,

fo operate ever closer fo its critical capacity, leading Quithout conflicts, scales as the number of agents gets large.

INCcreases in both the frequency and _duratlon qf delays. Thﬁ1ey consider various conflict models and assume agents do
strain is expected to worsen alongside a projected two- 19t communicate with one another

three- fold increase in the demand for air travel [1]. It is In many applications, including the next generation of air

widely acknowledged the current ATS lacks the operationrﬁl nsportation systems, the agents that make up the system

scalgbflllty to meet th'i dema_nd,hand ttliwat’ilh?_re ISI ‘FX? U9 have the ability to communicate with one another. In
need for sweeping change In now the ational ArSpac,;q paper, we show that, given this added functionality,

(NA.S) IS managed. T(.) ach|eye |mprovem_ents n SySte'ﬁHere exists a transfer policy that is free of conflicts and
efficiency, while safely increasing the capacity of the NASSC{iIes logarithmically in the number of agents. It is worth

there _has been a growing movement to embrace_the no“?”r% nforcing that although we are interested in determining
free-flight and afford aircratft greater autonomy in plargnin erformance limitations associated with the traffic dgnisit

routes and dF”_'”g fl|ght [1]. Such a move would _represerﬁn autonomous airspace, the discussion to follow is prgbabl
an epoch-defining shiit from predominantly centralizee-pr also applicable to other domains in which large numbers of

p!anneq operations under the c_Iose Supervision of hum%@tonomous agents navigate in a shared environment. Bor thi
air-traffic controllers, to more flexible, primarily automous reason, we use the terms agent and aircraft interchangeably
operations relying on inter-agent communication and Coofﬁrougr;out

dination to maintain a well-functioning airspace. This paper is organized in sections. Section Il provides the

q While an auftohnomous a|rrs],paccla hoIdshthe promlsiTtg afjdrmulation of the problem we consider, as well as a brief ac-
ress many o the issues that p ague t € curren_t ' tIg(ca)unt of related work that has been reported in the liteeatur
task of instituting new regulatory poI|C|es_|s complicateyd 5o chion 111 provides a new way to model conflicts among
th% need to ensurefsfafetyblon a sylstem-wmll_e .Ievell, anddgyt Gents operating in a shared environment. In Section IV, we
wide assortment of feasible regulatory policies. In Oraer t, ., iqe an algorithm capable of safely transferring allragge

make informed decisions about which next-gen policies t nd, by developing bounds on the transfer time, conclude

put in place, it is necessary to have a precise understandlggr algorithm is optimal in an asymptotic sense. Simulation

of the performance that is and, perhaps more mportantlyesults in Section V demonstrate the essential features of

IS not_p053|ble_|_n such systems. In other words, we mugf,, algorithm. Finally, Section VIl closes with concluding
establish quantifiable relationships between key methas t remarks

measure how efficiently the airspace is used, such as delay
and throughput, and environmental parameters, such &s traf Il. THE TRANSFERPROBLEM
intensity, navigational uncertainty, and the onset ofénoént

X ) We consider the problem of transferringagents between
weather, that may degrade during operation.

arbitrary source and destination points in a manner that
. . . is free of conflicts and scales favorably asgets large
The authors are with the Laboratory for Information and Bieci

Systems, Massachusetts Institute of Technology, Camdyribigh, 02139. [101' Such a scenarig is represen?ative of operations in a
{kspi eser, ddi mar, frazzol i }@it. edu so-called super-density traffic environment. We label the



agents arbitrarily as11,...,4n. The workspace of interest Definition 1 A transfer policy is free of conflicts, in the
is denoted byw and is assumed to be of fixed arda general sense, if for every pair of active agems, 4],

The position and velocity ofz; at timet are denoted by . . _ _ .

qi(t) € R? and v (t) € R?, respectively, fori = 1,...,n. It o (®) — G (O] = ro+ Nl +kvi ) —vi )], (@)
proves advantageous to conduct the analysis to follow i, j < 1,...,n,vt, whereZ > 0 andk > 0 are constants. ¢

terms of a polar coordinate frame. To this end, we express |, systems where agents are able to communicate with one
Gi in terms of the radial and angular componentGfas  gnother, as in the proposed next-gen ATS, it is the relative,
G (t) = (r_‘ )6 (F))’ Whereei_ (t) € [0’?"_)' _ rather than the absolute, velocity of agents that has the
Associated with each; is an origin pointG; and a greatest impact on safety. For these systems, it is appitepri
destination poinD;. At some point during transfen; travels o 5 first-order analysis to base the minimum separation

along a path that starts & and terminates abi. FOr gistance between two agents entirely on the difference in
a particular conflict-free transfer policg, we define the iheir velocities.

transfer timeT, (n), to be the total amount of time required
to transfer eachs; from O; to D;. We define theoptimal
transfer time T*(n), to be the minimum amount of time '~
needed to transfer each from O; to D; without conflicts. Ajs
Note thatT* (n) < T, (n) for any 2. In this paper, we are |q; (t) — q; (t)| > K |vi (t) — v; (t)
interested in howT, (n) and T*(n) scale asn gets large ,
for various distributions of origin and destination pointsWherek >0is a constant. o
Unsurprisingly, the answer depends on how a conflict is We use the relative-velocity conflict model throughout the
defined, which in turn is tied to how we relate interactiongemainder of this paper.
between agents in the workspace to our notion of what Presentation of our algorithm requires we define the
constitutes safe operation. dispersion associated with a set of points. Let =

In [10], the authors consider various conflict models fo{O1,...,0n,D1,...,Dn} denote the set of all origin and
agents that do not share their intentions with one anothél€stination points imw. The dispersion, denotedjisp, is
and investigate the associated transfer time as a funcfion @fined to be the radius of the largest circle that can be
n. A traditional approach to model conflicts in multi-agentnscribed inw and does not contain any of the pointssin
systems is to assign to eagha safety disca; (t), of radius [12]. Mathematically, the dispersion can be expressed as
ri > 0 centered aboug;(t). A system is said to be free of o . B
conflicts if a£; (t)nac; (t) = Ofori, j =1,...,n, i # j, vt. The Faisp = Maxmin [ — pf}. )
guestion of defining safety then reduces to one of defini
ri. In [10], the authors show that if the safety radius is low

Definition 2 A transfer policy is free of conflicts, in the
relative-velocity sense, if for every pair of active agerits

Mijel,...n vt (2

e also refer to the circle with radiugisp as the dispersion
b ded b . h ) €Eircle and denote its center bgc. Moreover, for large
ounded by a constant, i.,> ro, thenT"(n) = ©(n). In (i.e., the super-density case we are interested in), the

thg same work, the authors co_nsider a safety radius wi spersion can be shown to satisfy the asymptotic bound
affine dependence on, the velocity of ;. They show that Faisp= Q (1//7) [12]

if ri =r (n)4{|vi| wherel >0 is a constant,(n) = O(1//n)
from above, therm* (n) = ©(y/n). IV. THE SPIRAL ALGORITHM

In the next section, we argue that, in many cases, it is |n this section, we propose a new transfer algorithm,
the relative, rather than the absolute, velocity of agemis t show it is safe under the relative-velocity conflict model,
is most important when describing safety, and define thgnd investigate how its transfer time scalesnagets large.
relative-velocity conflict model that we use in the remaindeThe proposed algorithm, called tls®IRAL ALGORITHM, is
of this paper. composed of two phases:s®IRAL-IN phase, followed by a
SPIRAL-OUT phase. The basic idea is to have all of the agents
congregate inside the dispersion circle during $RerRAL-IN

For eacha;, in addition to a;’s position and velocity, phase and then send them off to their respective destination
at each time instant, we associate as being in either points during thesPIRAL-OUT phase. Before discussing each
an inactive or active state. We exclude inactive agentsphase in detail, assume, for notational simplicity, butitt
when Considering the conflict condition. Therefore, it |$y0n loss of genera”ty’ that the Workspace is a circle of radius
among the active agents that conflicts must be avoideff; and the dispersion circle is centered at the origin. The

We believe this formalism makes sense in a number @fpraL-IN and SPIRAL-OUT phases are described below.
settings. For example, in air traffic control, airplanesldut

in hangars or parked at terminal gates on the ground (i.e, fix Phase I:SPIRAL-IN

an inactive state) do not pose a safety risk to planes ali@ady At the beginning of theSPIRAL-IN phase, all aircraft are in
the sky until they take off (at which time they become active)an inactive state. This is consistent with aircraft beington
To fuse the notion of a relative-velocity-based separatioground at their outset airports, such that no aircraft pases
distance with the affine dependence on speed model in [18fety risk to another aircraft. During ts®IRAL-IN phase,
we propose the following generalized conflict model. 4; is active over the interval—t; 1,0], where —tj1 <0 is

Ill. A SYSTEM MODEL



Oc

Fig. 1. Geometry ofz; in w.

the time 4; is activated and leaves its origin point. Once

activated, 4; travels inward fromQO; along a logarithmic
spiral trajectory emanating frorge. Along this path, the
polar coordinates ofi; evolve according to the dynamics

(4)
: ®)

wherea > 0 andw > 0 are constants. That ig; travels
with a speed proportional to its distance fra and at a

fi = —ar;
ei = W

fixed angle inward from the vector tangent to its direction of

motion (see Figure 1). If we l&; = (ri 0,6 0), then solving
(4) and (5) givesy; (0) = (r; (0).6; (0)), where
ri(0) = rioe it
6i(0) = Bio+wh1.

(6)
()

B. Phase Il:SPIRAL-OUT

The SPIRAL-OUT phase begins at= 0", just after the
SPIRAL-IN phase has ended. During tBeIRAL-OUT phase,
4; is active over the intervdD, t; o], wheret; » > 0 is the time
4; reaches its destination. We adopt the convention &
deactivated (i.e., returned to an inactive state) onceaithres
its destination. In the case of aircraft, this is indicatfean
aircraft reaching its destination and landing. TéeIRAL-
OouUT phase is analogous to tlePIRAL-IN phase, with two
important exceptions. First, all agents begin #meRAL-OUT

Combining (6) with (10) to eliminate (0), and (7) with (11)
to eliminate; (0) gives

= etz tis) (12)
= Bio+W(ti2+ti1)— 21k, for somek e Z*.(13)

lid
Bid

It follows that

_ : . 1 ri,d
t|,2—t|,l - a |Og<ri’0) (14)
tio+tia = Mﬂ’;ﬁ_zm), for some ke Z*. (15)

The presence of therk/w term in (11), (13), and (15) is
required to resolve the fact that; may have encircled the
origin one or more times (during the the transfer) with our
convention tha®; 4 € [0,2m). As such,ti; andtj> may be
determined by solving (14) and (15) for the smallest Z*
such that

t1 < (1/a)|og(r‘r’ﬂ’) and (16)
0
Bio < wii1+6iq+ 21Kk a7

The condition in (16) guarantees make its way inside the
dispersion circle, while the condition in (17) addresses th
aforementioned multiple encirclements scenario.

To summarize, by solving (14) and (15), subject to (16)
and (17), we can calculate the activation time and deactiva-
tion time of each agent. It is important to note that inteesag
coordination is critical to the success of this algorithgeats
must schedule their motion according to a common clock in
order to ensure thePIRAL-IN and SPIRAL-OUT phases end
and begin, respectively, at time zero. In the next sectian, w
show the algorithm is free of conflicts.

C. Safety of theSPIRAL-ALGORITHM

Concerning the safety of thePIRAL ALGORITHM, we

phase at time zero, but, in general, are deactivated atetiife have the following result:
times. Second, the radial coordinate @f increases, rather Theorem 1 Under the relative-velocity conflict model,

than decreases throughout teeIRAL-OUT phase until the

the SPIRAL ALGORITHM is free of conflicts provided

time at which an agent reaches its destination point and ks < 1/va2+w?. <

deactivated. In this case, the polar coordinatesoévolve
according to the dynamics

f’i = dr;
6 = w

(8)
9)

Proof: We begin by noting that during th&PIRAL-IN
phase, all of the active aircraft move according to (4) and (5
During thesPIRAL-OUT phase, all of the active aircraft move
according to (8) and (9). Also, th&PIRAL-IN and SPIRAL-
ouT phases span disjoint intervals of time. Therefore, at any

Note the heading angle cf; continues to increase during time, all of the active agents move by following a common

the SPIRAL-OUT phase, just as it did during thePIRAL-
IN phase. Were we to ug® = —w during thesSPIRAL-OUT

phase, instead of (8%; would retrace the route it took from

flow field associated with either th®IRAL-IN Or SPIRAL-
ouT phase.
Now consider any two aircraft, say; and 4j, that are

S, making it impossible to transfet; to destination points active at timet during the sPIRAL-IN phase, as shown in

not residing on this path.

If we let D; = (rig,6iq), then solving (8) and (9) gives
(10)
(11)

lid = Tj (O)GMLZ
Big = 6i(0)+wty— 21k, for someke Z*.

Figure 2. For convenience, we suppress the dependence on
time in the relations that follow. From Figure 2, the square
of the distance separating and.a;j is

]qi—qj]2:ri2+rj2—2rirjcos(9i—ej). (18)



We begin by developing an upper bound for the leftmost
term on the right-hand side of (21). Liet arg maxt; 1 and
note that the term in question represents the duration of the
SPIRAL-IN phase.

Whenn is large, the dispersion satisfiggsp = Q (1/4/n).

It follows there exist:, € Z* and finitec > 0 such that for
all n > no the dispersion satisfiegisp > ¢//n.

For a worst case distribution of origin and destina-
tion points, 4; must travel from the workspace boundary
Ge (ri (—t 1) = R) to reach the edge of the dispersion circle and,
subsequently, rotate an additional fadians to reach the first
point that will take it toD; during theSPIRAL-OUT phase.
From the expression in (6), we can boungd by

Fig. 2. Relevant geometry of; and 4j in .

“Now consider the expresside —vj|. The speed of; is 1. (RAY), 20
given by ta < log =% )+
|V.| B \/(%)Z—F(ra_el)Z = O(|Ogn)
I ot Lot In the above, we have made use of a point that was noted
= Vo242 earlier, namely, thatx can be chosen to provide safety

_ _ independent of. A similar worst-case scenario applies in the
It follows, again from Figure 2, that the square of thespiraL-ouT phase and leads to the boutid = O(logn).

difference between the velocities af and 4; is Combining this result with the bound diy gives the upper
2 o o2 2 o o boundTsp(n) = O(logn). u
[vi—vi[" = (a®+ o) (¥ + 1 - 2rirjcos(6 — ;) . (19) For agents capable of communicating their intentions with
Combining (18) and (19) gives other agents, Theorem 2 indicates the adoption of thevelati
1 velocity conflict model allows for a dramatic reduction ireth
|ai — 0j| = ——— Vi —vj]|- transfer time. The improvement in transfer time can then be
VaZ+o? interpreted as a performance gain associated with systems

Comparing the above expression with the relative-velocitin which inter-agent communication allows for coordinated
conflict model in (2), we see the transfer is free of conflictérajectory planning.

provideda andw are chosen to satisfy
E. An Asymptotic Lower Bound ori*Th)

1
o2 =
a?+6? < K (20) In this subsection, we consider a lower boundTor(n).

A similar argument applies to any two agents that are actiy&/¢ P€gin by considering the transfer time complexity for a
during thesPIRAL-OUT phase. Therefore, for appropriatelyfavorable distribution of origin and destination points.
chosena and w, we conclude thesPIRAL-TRANSFER algo-  Proposition 1 Under the relative-velocity conflict model,
rithm is free of conflicts. B there exists a distribution of origin and destination psint

We remark that, in the above, the selectiom@2+ w2, for which T*(n) = Q(1). o
and thereforax, can be done independent of In the next Proof: Consider an arrangement of origin and desti-
section, we use this fact to develop an upper bound on theion points for which/ (D —O;) = Z(D; —O) for all
transfer time of theSPIRAL ALGORITHM. i,j €1,...,n. If all agents travel with finite speédhax along
D. An Asymptotic Upper Bound orsd(n) straight-line paths from their origin to their destinatipoint,
then |v; (t) —vj (t)| = 0 for all i, ], ensuring there are no
conflicts. FurthermoreT* (n) < ¢1v/A/Vimax Wherec; is a
finite constant dependent on the geometry of the workspace,
indicating the transfer time is independentrof ]

In this subsection, we derive an upper boundTgga(n),
the time required for thesPIRAL ALGORITHM to transfern
agents, in the case whenis large. We have the following

result:
The following result considers a lower bound @ri (n)

for a more challenging distribution of origin and destipati
points.

Theorem 2 For any distribution of origin and destination
points, Ep(n) = O(logn). ©

Proof: To investigate the transfer time for largenote
that since thesPIRAL-IN and SPIRAL-OUT phases end and
begin, respectively, dt= 0, the transfer time of thePIRAL-
ALGORITHM can be expressed as

Theorem 3 Under the relative-velocity conflict model, there
exists a distribution of origin and destination points for
which T*(n) = Q(logn). ©

Proof: Consider an arrangement of origin and destina-
Tsp(n) = max ti1 +maxti . (21)  tion points that has the following properties:



« all source points are distributed inside a small region V. SIMULATION RESULTS

such thatS§ — §j| < c1/n“for alli, j, wherec is a con-  Thjg section demonstrates the functionality of #rRAL
stant dependent on the geometry’of. An appropriate s goriTHM for a transfer ofn = 20 agents. Figure 3 pro-
value fork will be specified later. vides six snapshots that have been evenly spaced throughout

« the destination points are distributed in a separate regiohe time spanning the activation of the first agent to the
of w such thatD; —Dj| > 2c,//n for all i # j, where  deactivation of the last agent, inclusively. For each of the
Cy is a constant dependent on the geometrynof origin/destination points, the radial and angular compbne
It is noted that the distribution of origin and destinatiorwere selected by sampling uniformly ovéd.2,0.75 and
points is well-defined even for large providedk is suffi- [0.2m), respectively. The remaining parameters usedoare
ciently large. Now assume there is a time, $ay0 without 0.3 andw = 2, so that the transfer is free of conflicts for
loss of generality, at which a constant fraction of the agenk < 0.4975. The parameter values used were selected so the
(i.,e., m=an, 0 < a < 1) are active and inside the smalldispersion circle is sufficiently large and the trajectsseit-
region. Number these agents.asthrough.am, based on the ably distinguishable from one another to ensure readgbilit
order in which they reach their destination points, witthe

time at whicha; reache®;. Then[0,ty) may be divided into ) . )
the intervalg0,ty) , [tr,t2) ,.. ., [tm_1,tm), Wherefti_1,t) is the Although we have argued that the relative-velocity conflict

time interval in which only agents;, ..., 4m are active. model is appropriate for many applications, in some cases, i

It can be shown that the safety condition in (2) implies iS Prudent to consider both the relative velocity and reéati
position of agents when specifying a minimum separation.

I . tr—t X . . . .
Jai (t2) — 0 (t2) | < e2"/%|qj (ta) — q (ta) |, (22)  |n this section, we show that under one such conflict model,
foralli, j,tz, andtz :t; <t <min(t,t;). Noting thatT* (n) is the spiral algorithm remains free of conflicts.
the minimum time required to transfer all agents, we proceddefinition 3 A transfer policy is free of conflicts, in the
by considering two cases. spatial, relative-velocity sense, if for every pair of aeti
agents,aj, 4j,

V1. A REVISED CONFLICT MODEL

CASE 1: There exists a pair of agents, sayand.2j, such
that|qg; (t) —q; (t) | > c2/y/nfort e [0,min(t,t;)). Then since (9j— a)’
S —Sj| < c1/nk, it follows thatT* > log ((c2/c1) n<~%®) and jai —aj| > K o — il (Vi —vij), (23)

for k> 0.5, we haveT* (n) = Q(logn). viiel NVt wherek > 0 is a constant
Now assume CASE 1 does not occur. It must be that wel’J < T W K=>0l o -0 )
Under this conflict model, the minimum separation be-

have the following case: ' ™ :
tween.; and 4; is mandated to be positive only i and

bef\:/\'/o(\aseﬁ tﬁé J;s?inz%iztsﬁilrﬁ. ’tﬁrrgutrﬁ\éel 3vsi’thaanpat$\|/<o, 4; are heading “toward” each other. We have the following
P ghbm, y results concerning the safety of t8@IRAL ALGORITHM:

active agents always separated by less th@g/n. However, - i ) _ _
since|D; — D;j| > 2c,//n for all i # j, the transfer of agents Proposition 2 Under the spatial, relative-velocity conflict

is done one agent at a time, implying the duration of each §fodel, theSPIRAL ALGORITHM is free of conflicts foka <

the intervalg0,t1), [t1,t2),. .., [tm—1,tm) iS bounded from be- 1L o
low by ¢/ (Vmaxy/N). The total transfer time is then bounded Proof: To begin, note the safety condition can be
from below by (acz/N) /Vmax However, sinceTsp(n) =  rewritten as

O(logn), we are in contradiction with our definition @f* (n 2 T

as( tf?e)minimum transfer time for a specific arrang(ge)ment |qi (©-a (t)| Z k(@ —a) (v () =vi(t). (24)

of source and destination points. Therefore, CASE 1 muslonsider agentg; anda; that are active during thgPIRAL-

always hold andr* = Q (logn). B N phase. Noting;'= —ar; and6; = w, expanding the right-
This result implies that for certain arrangements of origithand side of (24) gives

and destination points th&PIRAL ALGORITHM is to withina K (qj —q;)" (Vi —Vj)

constant factor of the optimal transfer policy. The follogi

theorem summarizes this result formally.

Theorem 4 Under the relative-velocity conflict model,

= —K(ricosBj —rjcoshj,risinG —r;sing;) x
(fi cosBj — wr; sinG; — f; cosB; + wr sindj, f; sinB;+

for any distribution of origin and destination points, wrj cosd; — f; sinG; —OJTJ'COSGJ')T

T*(n) = ©(logn). = —K(rifj — 2arirj cosd;0j +rjij — 2rjrjasind; sin6;)
Proof: Given T*(n) < Tsp(n), the result follows di- = « (o (r?+r%) — 2arirjcos(6; — 6;))

rectly from the upper bound in Theorem 2 and the lower 2

bound in Theorem 3. n ket | — [

It is noted that whileT*(n) = Q(1) for certain arrange- Therefore, the transfer is safe fon < 1. An similar anal-
ments andT* (n) = Q (logn) for others, it remains to cate- YSis applies to agents that are active duringsReRAL-OUT
gorize the transfer time for a stochastic distribution dgior ~ phase; in this case; = ar;, implyingk (q; — g)" (Vi —v;) =
and destination points. This is the subject of ongoing work-ka ]qi —qj\z, indicating motion is safe for ang, w,k > 0.
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Fig. 3. Progression of agent trajectories during transtgeen triangles denote agents that have not left theirropgint. Red crosses denote agents
that have reached their destination point. Blue circlesotieagents in the process of being transferred. The timanhsorresponding to each snapshot
is shown at the top center of each plot. The blue lines reptemgent trajectories. To provide a sense for how fast thatagaove, the last 0.3s of each
agent’s trajectory is shown in varying shades of blue; thé&atathe shade, the more recently the point was visited.



Therefore, we are limited by safety considerations imposegdi] S. Martinez, F. Bullo, J. Cortés, and E. Frazzoli, “Oymehronous
during the SPIRAL-IN phase and we conclude the spiral robotic ngtworks-partl: Models, tasks and complexity osi,” IEEE
fer i fe f <1 n Transactions on Automatic Controlol. 52, pp. 18351841, 2007.
tran_s eris sa_e ORO = - [12] S. LaValle, Planning Algorithms  New York, NY: Cambridge
Given our interpretation of (23), the above result makes  University Press, 2007.

sense; namely, since active agents never travel “toward” on
another during thespiAL-OUT phase, there is no issue with
safety during this phase. It is noted that the safety comdliti
that must be satisfied during theP1AL-IN phase does not
depend onw, and we are free to choose this quantity to
fulfill other criteria.

VIl. CONCLUSIONS ANDFUTURE DIRECTIONS

We introduced a new approach to model conflicts among
aircraft operating in a shared airspace. An algorithm was pr
sented that transfers aircraft between origin and destimat
points, is free of conflicts, and whose transfer time scales
logarithmically in the number of aircraft was presentede Th
ideas reported have a number of natural extensions. Phgsent
we are investigating transfer schemes in which the veladity
aircraft deviates only minimally from a constant value lfeat
than scaling linearly with distance as in our algorithm), as
this is more representative of the velocity profile that is
desired during flight. We are also interested in a dynamic
version of the transfer problem in which requests by agents t
move between points in the workspace arrive stochastically
on an ongoing basis. Finally, it remains to quantify how
closures in portions of the workspace (due, for example, to
inclement weather) and navigational uncertainty have en th
transfer time in super-density traffic environments.
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